CURSO ONLINE E 100% GRATUITO

APLICANDO A NBR 5410 NO PROJETO DE CIRCUITOS ELÉTRICOS

IRA

MÓDULO 4

ROTEIRO DE APLICAÇÃO ABNT NBR 5410

> Segunda edição 30.09.2004

Válida a partir de 31.03.2005

Versão Corrigida 17.03.2008

es elétricas de baixa tensão

allations of buildings – Low voltage

Caso a ser dimensionado

Transformador 125 kVA

13,8 kV / (220/380V)

z = 4%

AT I

QP

Circuito 2 Alimentador do QT

- 220/380 V
- 3F+N

QDG

- 55 kVA (com reserva = 10% e harmônicas)
- THD₃ = 50%
- L = 40 m
- $\theta_a = 35^{\circ}C$
- Bandeja perfurada
- Mais 5 circuitos na mesma bandeja – camada única

Circuito 3 Alimentador do equipamento

EQUIPAMENTO

- 220/380 V
- 2F+N

QT

- 15 kVA (com reserva = 10% e harmônicas)
- THD₃ = 30%
- L = 10 m
- $\theta_a = 35^{\circ}C$
- Eletroduto aparente
- Mais 2 circuitos no mesmo eletroduto

Circuito 1 Alimentador do QDG

- 220/380 V
- 3F+N
- 125 kVA (com reserva = 10% e harmônicas)
- $THD_3 = 40\%$
- L = 20 m
- $\theta_a = 25^{\circ}C$
- Eletroduto enterrado a 1 m
- Solo lamacento

Seleção dos condutores vivos pela Tabela 47 - NBR 5410 (seção mínima)

NBR 5410

6.2.6.1 - Critério da seção mínima (S₁)

Tabela 47 — Seção mínima dos condutores¹⁾

Tipo de linha		Utilização do circuito	Seção mínima do condutor mm² - material	
		Circuitos de iluminação	1,5 Cu 16 Al	
	Condutores <u>e</u> cabos isolados	Circuitos de força ²⁾	2,5 Cu 16 Al	
Instalações fixas em geral		Circuitos de sinalização e circuitos de controle	0,5 Cu ³⁾	
	Condutores nus	Circuitos de força	10Cu 16 Al	
Condutores nas		Circuitos de sinalização e circuitos de controle	4 Cu	
Linhas flexíveis com cabos isolados		Para um equipamento específico	Como especificado na norma do equipamento	
		Para qualquer outra aplicação	0,75 Cu ⁴⁾	
		Circuitos a extrabaixa tensão para aplicações especiais	0,75 Cu	

¹⁾ Seções mínimas ditadas por razões mecânicas

Circuito 1 Circuito 2 Circuito 3: $S_1 = \# 2,5$

²⁾Os circuitos de tomadas de corrente são considerados circuitos de força.

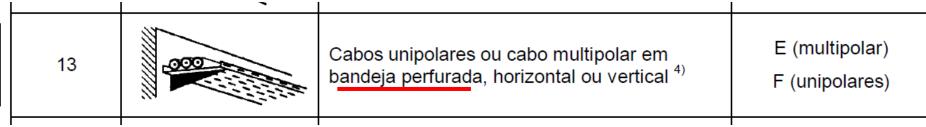
³⁾ Em circuitos de sinalização e controle destinados a equipamentos eletrônicos é admitida uma seção mínima de 0,1 mm².

⁴⁾ Em cabos multipolares flexíveis contendo sete ou mais veias é admitida uma seção mínima de 0,1 mm².

Determinação do método de instalação, Método de referência e Escolha do tipo de condutor

Tabela 33 – Tipos de linhas elétricas

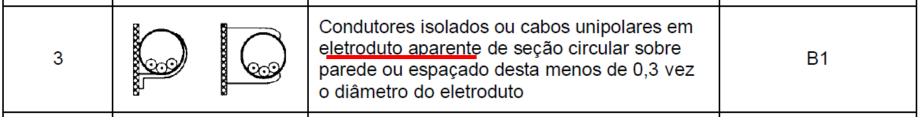
Circuito 1 Alimentador do QDG


Eletroduto enterrado a 1 m

|--|

Cabo Cu/HEPR - 0,6/1 kV - unipolar - NBR 7286

Circuito 2 Alimentador do QT


Bandeja perfurada

Cabo Cu/Não halogenado - 0,6/1 kV – unipolar – NBR 13248

Circuito 3 Alimentador do equipamento

Eletroduto aparente

Cabo Cu/Não halogenado - 0,6/1 kV – unipolar – NBR 13248

Determinação dos fatores de correção para cálculo da capacidade de corrente

NBR 5410

Fator de correção de temperatura (f₁)

Tabela 40 — Fatores de correção para temperaturas ambientes diferentes de 30°C para linhas não-subterrâneas e de 20°C (temperatura do solo) para linhas subterrâneas

Circuito	θ _A (°C)	f ₁
1	25	0,96
2	35	0,96
3	35	0,96

Temperatura	Isolação				
°C	PVC	EPR ou XLPE			
Ambiente					
10	1,22	1,15			
15	1,17	1,12			
20	1,12	1,08			
25	1,06	1,04			
35 —	0,94	0,96			
40	0,87	0,91			
Do solo	1				
10	1,10	1,07			
15	1,05	1,04			
25	0,95	0,96			
30	0,89	0,93			

Fator de correção de resistividade do solo (f₂)

Circuito 1 Solo lamacento \rightarrow $f_2 = 1,1$

Tabela 41— Fatores de correção para linhas subterrâneas em solo com resistividade térmica diferente de 2,5 K.m/W

Resistividade térmica K.m/W	1	1,5	2	3
Fator de correção	1,18	1,1	1,05	0,96

NOTAS

- 1 Os fatores de correção dados são valores médios para as seções nominais abrangidas nas tabelas 36 e 37, com uma dispersão geralmente inferior a 5%.
- 2 Os fatores de correção são aplicáveis a cabos em eletrodutos enterrados a uma profundidade de até 0,8 m.
- 3 Os fatores de correção para cabos diretamente enterrados são mais elevados para resistividades térmicas inferiores a 2,5 K.m/W e podem ser calculados pelos métodos indicados na ABNT NBR 11301.

Fator de correção de agrupamento (f₃)

		(
I COULT			
NÓ	Or		

Circuito	Método de instalação	Número total de circuitos no conduto	f ₃
1	Eletroduto Enterrado	1	1 —
2	Bandeja perfurada	6	0,73
3	Eletroduto aparente	3	0,70

Tahela 45	– Fatores de agrupa	mento nara linha	s em eletrodutos	e enterrados ¹⁾
i abeia 45 –	– Fatores de adruba	mento para iinna	is em eletrodutos	s enterrados 1

Cabos multipolares em eletrodutos – Um cabo por eletroduto							
Número de		Espaçamento entre	eletrodutos (a)				
circuitos	Nulo	0,25 m	0,5 m	1,0 m			
2	0,85	0,90	0,95	0,95			
2	0.75	0.05	مو م	ח מב			

Tabela 42

ção aplicáveis a condutores agrupados em feixe (em linhas abertas ou ndutores agrupados num mesmo plano, em camada única

Forma de agrupamento dos condutores Em feixe: ao ar livre ou sobre superfície; embutidos; em conduto fechado	1,00	0,80	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥20	métodos de referência
sobre superfície; embutidos;	1,00	0.80											
		5,00	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	36 a 39 (métodos A a F)
Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71		0,7	7 0		36 e 37 (método C)
Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62		0,6	61		
Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72		0,7	'2		38 e 39
Camada única sobre leito, suporte etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78		0,7	78		(métodos E e F)
	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto Camada única em bandeja perfurada Camada única sobre leito, suporte etc.	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto 0,95 Camada única em bandeja perfurada Camada única sobre leito,	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto 0,95 0,81 Camada única em bandeja 1,00 0,88 perfurada Camada única sobre leito, suporte etc.	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto Camada única em bandeja perfurada Camada única sobre leito, suporte etc. 1,00 0,85 0,79 0,81 0,72 0,82	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira 1,00 0,85 0,79 0,75 Camada única no teto 0,95 0,81 0,72 0,68 Camada única em bandeja 1,00 0,88 0,82 0,77 perfurada 1,00 0,87 0,82 0,80 camada única sobre leito, suporte etc. 1,00 0,87 0,82 0,80	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira 1,00 0,85 0,79 0,75 0,73 Camada única no teto 0,95 0,81 0,72 0,68 0,66 Camada única em bandeja 1,00 0,88 0,82 0,77 0,75 perfurada 1,00 0,87 0,82 0,80 0,80 camada única sobre leito, suporte etc. 1,00 0,87 0,82 0,80 0,80	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira 1,00 0,85 0,79 0,75 0,73 0,72 Camada única no teto 0,95 0,81 0,72 0,68 0,66 0,64 Camada única em bandeja perfurada 1,00 0,88 0,82 0,77 0,75 0,73 Camada única sobre leito, 1,00 0.87 0.82 0.80 0.80 0.79	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto Camada única em bandeja 1,00 0,85 0,79 0,75 0,73 0,72 0,72 0,72 0,72 0,73 0,72 0,68 0,66 0,64 0,63 Camada única em bandeja 1,00 0,88 0,82 0,77 0,75 0,73 0,73 0,73 0,73 0,73	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto Camada única em bandeja 1,00 0,85 0,79 0,75 0,73 0,72 0,71 0,71 0,72 0,71 0,72 0,71 0,72 0,73 0,72 0,73 0,72 0,73 0,72 0,73 0,73 0,72 0,73 0,73 0,72 0,73 0,73 0,72 0,73 0,73 0,73 0,73 0,72 0,73	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira Camada única no teto Camada única em bandeja 1,00 0,85 0,79 0,75 0,73 0,72 0,71 0,71 0,71 0,72 0,68 0,66 0,64 0,63 0,62 Camada única em bandeja 1,00 0,88 0,82 0,77 0,75 0,73 0,73 0,72 perfurada Camada única sobre leito, 1,00 0,87 0,82 0,80 0,80 0,79 0,79 0,78	Camada única sobre parede, piso, ou em bandeja 1,00 0,85 0,79 0,75 0,73 0,72 0,72 0,71 0,75 não perfurada ou prateleira Camada única no teto 0,95 0,81 0,72 0,68 0,66 0,64 0,63 0,62 0,60 Camada única em bandeja 1,00 0,88 0,82 0,77 0,75 0,73 0,73 0,72 0,72 perfurada Camada única sobre leito, 1,00 0,87 0,82 0,80 0,80 0,79 0,79 0,79 0,78 0,77 0,78 0,79 0,79 0,79 0,78 0,77 0,77 0,77 0,77 0,77 0,77 0,77	Camada única sobre parede, piso, ou em bandeja 1,00 0,85 0,79 0,75 0,73 0,72 0,72 0,71 0,70 não perfurada ou prateleira Camada única no teto 0,95 0,81 0,72 0,68 0,66 0,64 0,63 0,62 0,61 Camada única em bandeja 1,00 0,88 0,82 0,77 0,75 0,73 0,73 0,72 0,72 perfurada Camada única sobre leito, 1,00 0,87 0,82 0,80 0,80 0,79 0,79 0,78 0,78	Camada única sobre parede, piso, ou em bandeja 1,00 0,85 0,79 0,75 0,73 0,72 0,72 0,71 0,70 não perfurada ou prateleira Camada única no teto 0,95 0,81 0,72 0,68 0,66 0,64 0,63 0,62 0,61 Camada única em bandeja 1,00 0,88 0,82 0,77 0,75 0,73 0,73 0,72 0,72 perfurada Camada única sobre leito, 1,00 0,87 0,82 0,80 0,80 0,79 0,79 0,79 0,78 0,78

Determinação das correntes de projeto

NBR 5410

Corrente de projeto de fase (I_B)

Corrente prevista para ser transportada por um circuito durante seu funcionamento normal. É com ela que são dimensionados os componentes da instalação.

Circuito FF / 3F

Circuito FN

$$I_B = \frac{D_M}{f.U}$$

$$I_B = \frac{D_M}{U_o}$$

I_B = corrente de projeto (A)

D_M = potência de alimentação (demanda máxima) (VA)

f = 1,0 circuito fase-fase | $\sqrt{3}$ circuito trifásico

U = tensão fase-fase (V)

U_o = tensão fase-neutro

Circuito	D _M (kVA)	Uo/U (V)	Tipo	I _B (A)
1	125	220/380	3F+N	190
2	55	220/380	3F+N	84
3	15	220/380	2F+N	40

Foi assumido que a demanda máxima (potência de alimentação) já considera a presença de componentes harmônicas, conforme indicado anteriormente

Corrente de projeto de neutro (I_{BN})

Circuito	THD ₃ (%)	I _B (A)	I _{BN} (A)
1 (3F+N)	40	190	3 . (190 . 0,40) = <mark>228</mark>
2 (3F+N)	50	84	3. (84 . 0,50) = <mark>126</mark>
3 (2F+N)	30	40	2. (40 . 0,3) = <mark>24</mark>

Corrente fictícia de projeto (l'_B / l'_{BN})

Circuito	I _B (A)	f ₁	f ₂	f_3	l' _B (A)
1 (3F+N)	190	0,96	1,1	1	190 / (0,96 . 1,1 . 1) = 180
2 (3F+N)	84	0,96	-	0,73	84 / (0,96 . 0,73) = 120
3 (2F+N)	40	0,96	-	0,70	40 / (0,96 . 0,70) = 60

Circuito	I _{BN} (A)	f ₁	f ₂	f ₃	l' _{BN} (A)
1 (3F+N)	228	0,96	1,1	1	228 / (0,96 . 1,1 . 1) = <mark>216</mark>
2 (3F+N)	126	0,96	-	0,73	126 / (0,96 . 0,73) = <mark>180</mark>
3 (2F+N)	24	0,96	-	0,70	24 / (0,96 . 0,70) = <mark>36</mark>

Tabela 37 — Capacidades de condução de corrente referência A1, A2, Condutores: cobre e alumínio Isolação: EPR ou XLPE Temperatura no condutor: 90°C Temperaturas de referência do ambier

Seções				Métod	dos de re	ferência i	no
nominais	A	.1	A	2	В	1	Γ
mm ²			•		Número o	de condut	0
mm-	2	3	2	3	2	3	Γ
							_
(1)	(2)	(3)	(4)	(5)	(6)	(7)	Γ
					C	obre	_
0,5	10	9	10	9	12	10	Γ
0,75	12	11	12	11	15	13	Γ
1	15	13	14	13	18	16	Γ
1,5	19	17	18,5	16,5	23	20	Γ
2,5	26	23	25	22	31	28	Γ

Determinação das seções nominais dos condutores de fase por capacidade de corrente

6.2.5.6 Número de condutores carregados

6.2.5.6.1

O número de condutores carregados a ser considerado é aquele indicado na tabela 46, de acordo com o esquema de condutores vivos do circuito.

Tabela 46 — Número de condutores carregados a ser considerado, em função do tipo de circuito

Esquema de condutores vivos do circuito	Número de condutores carregados a ser adotado				
Monofásico a dois condutores	2				
Monofásico a três condutores	2				
Duas fases sem neutro	2				
Duas fases com neutro	3				
Trifásico sem neutro	3				
Trifásico com neutro	3 ou 4 ¹⁾				
¹⁾ Ver 6.2.5.6.1.					

Tabela 37 — Capacidades de condução de corrente referência A1, A2,

Condutores: cobre e alumínio

Isolação: EPR ou XLPE

Temperatura no condutor: 90°C

Temperaturas de referência do ambier

Seções				Métod	dos de ref	ferência i	nd
nominais	Α	1	Α	2	В	31	
mm ²					Número o	de condut	or
mm²	_2	3	2	3	2	3	Γ
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
					C	obre	
0,5	10	9	10	9	12	10	
0,7 5	12	11	12	11	15	13	
1	15	13	14	13	18	16	
1,5	19	17	18,5	16,5	23	20	Г
2,5	26	23	25	22	31	28	

6.2.5.6 Número de condutores carregados

6.2.5.6.1

Circuito 3F+N com 15 < THD₃ ≤ 45% → considera 4 condutores carregados e aplica fn = 0,86 nas colunas de 3 condutores carregados

NOTA 4 - O fator de correção devido ao carregamento do neutro **pode ser dispensado** nos casos em que a definição da seção dos condutores embutir um sobredimensionamento dos condutores de fase, nos níveis mencionados em E2 e E3.

 $THD_3 > 45\%$

eis eis	3 (2

Circuito	THD ₃ (%)
1 (3F+N)	40
2 (3F+N)	50
3 (2F+N)	30

Tabela 37 — Capacidades de condução de corrente referência A1. A2.

Condutores: cobre e alumínio

Isolação: EPR ou XLPE

Temperatura no condutor: 90°C

Temperaturas de referência do ambier

Seções				Méto	dos de refe	erência	ind
nominais	A	1	A.	2	B′	1	T
I		-			Número d	e condu	tor
mm ²	2	3	2	3	2	3	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
					Co	ore	_
0,5	10	9	10	9	12	10	
0,75	12	11	12	11	15	13	
1	15	13	14	13	18	16	
1,5	19	17	18,5	16,5	23	20	Γ
2,5	26	23	25	22	31	28	Γ

THD₃ (%)

40

50

30

Circuito

1 (3F+N)

2 (3F+N)

3 (2F+N)

Seção nominal por capacidade de corrente – condutor de fase

Circuito	I _B (A)	l' _B (A)	Método de referência
1 (3F+N)	190	180/0,86 = 209	D
2 (3F+N)	84	120	F
3 (2F+N)	40	60	B1

Circuito	S _F (mm²)
1 (3F+N)	95
2 (3F+N)	
3 (2F+N)	10

Tabela 37 — Capacidades de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D

Condutores: cobre e alumínio Isolação: EPR ou XLPE

Temperatura no condutor: 90°C

Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

											1	$\overline{}$
Seções		Métodos de referência indicados na tabela 33										
nominais	A	۸1	Α	2	/ B	1	В	2	(/ D	'
mm ²					Número d	le condu	ores carr	egados				1
mm-	2	3	2	3	2	3	2	3	2	3	2	3
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	,	•			•							
					C	obre						
0,5	10	9	10	9	12	10	11	10	12	11	14	12
0,75	12	11	12	11	15	13	15	13	16	14	18	15
1	15	13	14	13	18	16	17	15	19	17	21	17
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22
2,5	26	23	25	22	31	28	30	26	33	30	34	29
4	35	31	33	30	42	37	40	35	45	40	44	37
6	45	40	42	38	54	48	51	44	58	52	56	46
10 🖊	61	54	57	51	75	→ 66	69	60	80	71	73	61
16	81	73	76	68	100	88	91	80	107	96	95	79
25	106	95	99	89	133	117	119	105	138	119	121	101
35	131	117	121	109	164	144	146	128	171	147	146	122
50	158	141	145	130	198	175	175	154	209	179	173	144
70	200	179	183	164	253	222	221	194	269	229	213	178
95	241	216	220	197	306	269	265	233	328	278	252	211
120	278	249	253	227	354	312	305	268	382	322	287	240
		1					1					

Seção nominal por capacidade de corrente – condutor de fase

Tabela 39 — Capacidades de condução de corrente, em ampères, para o Módulo 3 referência E, F e G
Condutores: cobre e alumínio

Isolação: EPR ou XLPE

Temperatura no condutor: 90°C

Temperatura ambiente de referência: 30°C

Circuito	I _B (A)	I' _B (A)	Método de referência
1 (3F+N)	190	209	D
2 (3F+N)	84	, 120	F
3 (2F+N)	40	60	B1

Circuito	THD ₃ (%)	
1 (3F+N)	40	
2 (3F+N)	50	
3 (2F+N)	/30	_

 $\mathsf{THD}_3 > 45\% \; \textcolor{red}{\blacktriangleright}$ Dispensado o **fator 0,86**

)

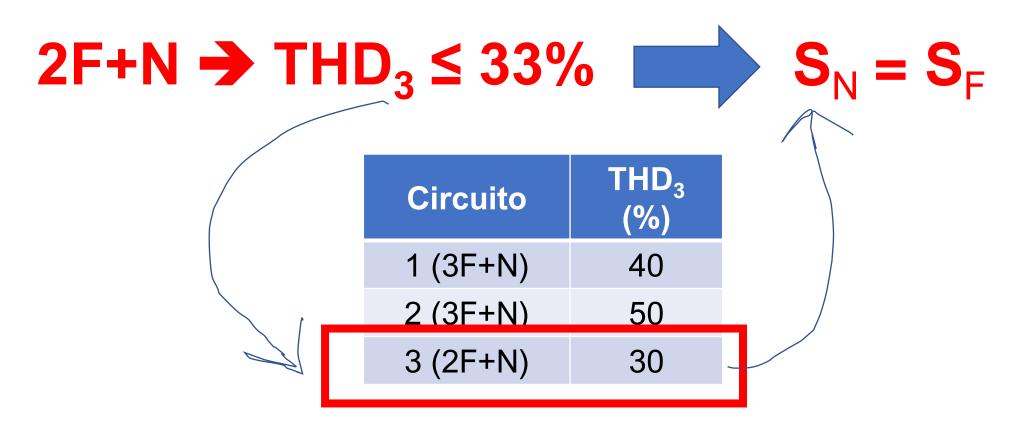
		N	Métodos de referê	ncia i	ndicados	na tabela 33					
	Cabos m	ultipolares	Cabos unipolares ¹⁾								
	Dois	Três	Dois								
	condutores	condutores	condutores /	condutores		ne	p mesmo plar				
Seções	carregados	carregados	carregados		regados,	Justapostos		çados			
nominais dos			justapostos		n trifólio	·	Horizontal	Vertical			
condutores	Método E	Método E	Método F	M	étodo F	Método F	Método G	Método G			
mm ²	Q;	@	100	1	<u></u>		7 : 1 9 9 9				
	7)	<u> </u>)		78		1 P			
(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)			
			Cobre								
0,5	13	12	13		10	10	15	12			
0,75	17	15	17		13	14	19	16			
1	21	18	21		16	17	23	19			
1,5	26	23	27		21	22	30	25			
2,5	36	32	37		29	30	41	35			
4	49	42	50		40	42	56	48			
6	63	54	65		53	55	73	63			
10	86	7 5	90		74	77	101	88			
16	115	100	121		101	105	137	120			
25	149	127	161		135	141	182	161			

Determinação das seções nominais dos condutores neutros por capacidade de corrente

6.2.6.2 Condutor neutro

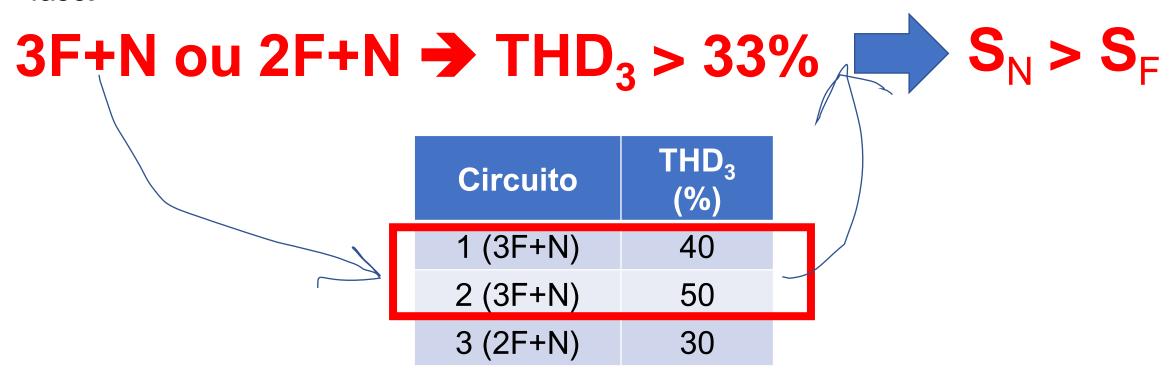
6.2.6.2.2 O condutor neutro de um circuito monofásico deve ter a mesma seção do condutor de fase.

6.2.6.2.3 Quando, num circuito trifásico com neutro, a taxa de terceira harmônica e seus múltiplos for superior a 15%, a seção do condutor neutro não deve ser inferior à dos condutores de fase, podendo ser igual à dos condutores de fase se essa taxa não for superior a 33%.


$$3F+N → 15\% ≤ THD3 ≤ 33% → SN = SF$$

Circuito	THD ₃ (%)
1 (3F+N)	40
2 (3F+N)	50
3 (2F+N)	30

6.2.6.2 Condutor neutro


6.2.6.2.4 A seção do condutor neutro de um circuito com duas fases e neutro não deve ser inferior à seção dos condutores de fase, podendo ser igual à dos condutores de fase se a taxa de terceira harmônica e seus múltiplos não for superior a 33%.

6.2.6.2 Condutor neutro

6.2.6.2.5 Quando, num circuito trifásico com neutro ou num circuito com duas fases e neutro, a taxa de terceira harmônica e seus múltiplos for superior a 33%, pode ser necessário um condutor neutro com seção superior à dos condutores de fase.

Seção nominal por capacidade de corrente – condutor neutro

Circuito	I _{BN} (A)	ľ _{BN} (A)	Método de referência
1 (3F+N)	228	216/0,86 = 251	D
2 (3F+N)	125	180	F
3 (2F+N)	24	36	B1

180	F
36	B1

Circuito	THD ₃ (%)
1 (3F+N)	40
2 (3F+N)	50
3 (2F+N)	30

Circuito	S _N (mm²)
1 (3F+N)	150
2 (3F+N)	
3 (2F+N)	10

6.2.6.2.4 - 2F+N → THD₃ ≤ 33% → $S_N = S_F$

Tabela 37 — Capacidades de condução de corrente, em ampères, para os métodos de referência A1, A2, B1, B2, C e D

Condutores: cobre e alumínio

Isolação: EPR ou XLPE

Temperatura no condutor: 90°C

Temperaturas de referência do ambiente: 30°C (ar), 20°C (solo)

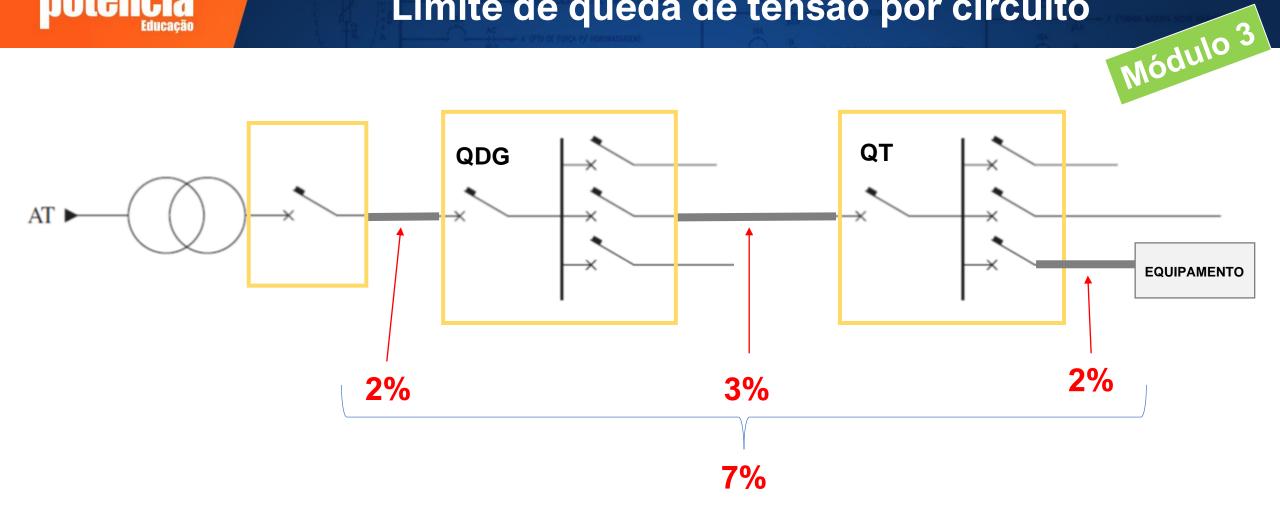
											7		
Rossos				Métod	dos de re	erêncja i	ndicados	na tabela	a 33		-		
Seções ominais	A	\1	Α	2	B1			B2		С [
			•		Número d	de condut	ores carr	egados	•				
mm ²	2	3	2	3	2	3	2	3	2	3	2	3	
(1)	(2)	(3)	(4)	(5)	(6)	E	(8)	(9)	(10)	(11)	(12)	(13)	
Cobre													
0,5	10	9	10	9	12	10	11	10	12	11	14	12	
0,75	12	11	12	11	15	13	15	13	16	14	18	15	
1	15	13	14	13	18	16	17	15	19	17	21	17	
1,5	19	17	18,5	16,5	23	20	22	19,5	24	22	26	22	
2,5	26	23	25	22	31	28	30	26	33	30	34	29	
, 4 🚛	35	31	33	30	42	37	40	35	45	40	44	37	
6	45	40	42	38	54	48	51	44	58	52	56	46	
10	61	54	57	51	75	66	69	60	80	71	73	61	
16	81	73	76	68	100	88	91	80	107	96	95	79	
25	106	95	99	89	133	117	119	185	138	119	121	101	
35	131	117	121	109	164	144	146	128	171	147	146	122	
50	158	141	145	130	198	175	175	154	209	179	173	144	
70	200	179	183	164	253	222	221	194	269	229	213	178	
95	241	216	220	197	306	269	265	233	328	278	252	211	
120	278	249	253	227	354	312	305	268	382	322	287	240	
150	318	285	290	259	407	358	349	307	441	371	324	271	
185	362	324	329	295	464	408	395	348	506	424	363	304	
ı	ı			1	1	1			i	l		ı	

fator 0,86

Seção nominal por capacidade de corrente – condutor neutro

Circuito	I _{BN} (A) I' _{BN} (A)		Método de referência									
					Cabos m	ultipolares	netodos de refere		os unipolares ¹)		
1 (3F+N)	228	216	D		Dois condutores carregados	Dois Três condutores	carregados, car	Três condutores	Três Três cor		ndutores carregados, o mesmo plano	
2 (3F+N)	125	,180	F	Seções nominais dos				carregados, em trifólio	Justapostos	Fena	çados Vertical	
0 (0 5 1)	4.4			condutores	Método E	Método E	Método F	Metodo F	Método F	Método G	Método G	
3 (2F+N)	41	/ 61	B1	mm ²	11	1:	100	1 &		15000	16	
Circuito THD ₃ (%)							18	1 00	78			
1 (3F+N)	40				(2)		,	(5)	/		100	
, ,			S _N	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
2 (3F+N)	50 /	Circuito		35	185	158	Cobre 200	169	176	226	201	
, ,	/		(mm²)	50 ←	225	192	242	207	216	275	246	
3 (2F+N)	30 /			70	289	246	310	268	279	353	318	
		1 (3F+N)		95	352	298	377	328	342	430	389	
THD ₃ > 45%	→ /	2 (3F+N)	50									
Dispensado		3 (2F+N)										

Circuito	S _F (mm ²)	S _N (mm ²)
1 (3F+N)	95	150
2 (3F+N)	25	50
3 (2F+N)	10	10



Determinação das seções nominais dos condutores por queda de tensão

NBR 5410

Limite de queda de tensão por circuito

Cálculos das quedas de tensão

$$\overline{\Delta U} = \frac{\Delta U}{I_B \cdot l} = t(r \cos \Phi + x \sin \Phi)$$

Circuito 1:

S # 95 (3F+N)

 $I_{\rm B} = 190 \, {\rm A}$

 $\cos \phi = 0.8$

L = 20 m

Eletroduto enterrado

 $\Delta U = 0.43 \times 190 \times 0.02 = 1.63 \text{ V}$

 $\Delta U = (1,63 / 380) \times 100\% =$

0,43% < 2% que é a máxima queda de tensão admitida neste circuito

	Cabos unipolares ³													
Seções														
nominais			Circuito mo							o trifásico			Circuito trifásico	
(mm) ¹			P. .9	<u>U</u> -					(P), (9	0 ' <u>@1</u> ∘				
S = 10cm		S = 20	S = 20cm		S = 2D		S = 10cm		S = 20cm		S = 2D			
	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95
1,5	23,6	27,8	23,7	27,8	23,4	27,6	20,5	24,0	20,5	24,1	20,3	24,0	20,2	23,9
2,5	14,6	17,1	14,7	17,1	14,4	17,0	12,7	14,8	12,7	14,8	12,5	14,7	12,4	14,7
4,0	9,3	10,7	9,3	10,7	9,1	10,6	8,0	9,3	8,1	9,3	7,9	9,2	7,8	9,2
6,0	6,3	7,2	6,4	7,2	6,1	7,1	5,5	6,3	5,5	6,3	5,3	6,2	5,2	6,1
10	3,9	4,4	3,9	4,4	3,7	4,3	3,4	3,8	3,4	3,8	3,2	3,7	3,2	3,7
16	2,6	2,8	2,6	2,8	2,4	2,7	2,2	2,4	2,3	2,5	2,1	2.4	2,0	2,3
25	1,73	1,83	1,80	1,86	1,59	1,76	1,52	1,59	1,57	1,62	1,40	1,53	1,32	1,49
35	1.33	1,36	1,39	1,39	1,20	1,29	1,17	1,19	1,22	1,22	1,06	1,13	0,98	1,09
50	1,05	1,04	1,11	1,07	0,93	0,97	0,93	0,91	0,98	0,94	0,82	0,85	0,75	0,82
70	0,81	0,76	0,87	0,80	0,70	0,71	0,72	0,67	0,77	0,70	0,63	0,62	0,55	0,59
95	0,65	0,59	0,71	0,62	0,56	0,54	0,58	0,52	0,64	0,55	0,50	0,47	0,43	0,44
120	0,57	0,49	0,63	0,52	0,48	0,44	0,51	0,43	0,56	0,46	0,43	0,39	0,36	0,36
150	0,50	0,42	0,56	0,45	0,42	0,38	0,45	0,37	0,51	0,40	0,38	0,34	0,31	0,30

Cálculos das quedas de tensão

$$\overline{\Delta U} = \frac{\Delta U}{I_B \cdot l} = t(r \cos \Phi + x \sin \Phi)$$

Circuito 2:

S # 25 (3F+N)

 $I_{R} = 84 \text{ A}$

 $\cos \phi = 0.8$

L = 40 m

Bandeja perfurada

 $\Delta U = 1,34 \times 84 \times 0,04 = 4,50 \text{ V}$

 $\Delta U = (4,50 / 380) \times 100\% =$

1,2% < 3% que é a máxima queda de tensão admitida neste circuito

S	Seções	Cabos unipolares ³													
n	ominais (mm)			Circuito mo						Circuit	trifásico			Circui trifási	
		S = 10cm		S = 20cm		S = 2D		S = 10cm		S = 20cm		S = 2D		(2)	
		FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95
	1,5	23,8	28,0	23,9	28,0	23,6	27,9	20,7	24,2	20,7	24,3	20,5	24,1	20,4	24,1
	2,5	14,9	17,4	15,0	17,5	14,7	17,3	12,9	15,1	13,0	15,1	12,8	15,0	12,7	15,0
	4,0	9,4	10,9	9,3	10,9	9,2	10,8	8,2	9,5	8,2	9,5	8,0	9,4	7,9	9,3
	6,0	6,4	7,3	6,4	7,3	6,2	7,2	5,5	6,3	5,6	6,3	5,4	6,2	5,3	6,2
	10	3,9	4,4	4,0	4,4	3,7	4,3	3,4	3,8	3,5	3,8	3,3	3,7	3,2	3,7
	16	2,58	2,83	2,64	2,86	2,42	2,74	2,25	2,46	2,31	2,48	2,12	2.39	2,05	2,35
	25 —	1,74	1,85	1,81	1,88	1,61	1,77	1,53	1,61	1,58	1,64	1,41	1,55	1,34	1,51
	35	1.34	1,37	1,40	1,41	1,21	1,30	1,18	1,20	1,23	1,23	1,06	1,14	0,99	1,10
	50	1,06	1,05	1,12	1,09	0,94	0,99	0,94	0,92	0,99	0,95	0,83	0,87	0,76	0,83
	70	0,81	0,77	0,88	0,80	0,70	0,71	0,72	0,68	0,78	0,70	0,63	0,63	0,56	0,59
	95	0,66	0,59	0,72	0,62	0,56	0,54	0,59	0,52	0,64	0,55	0,50	0,48	0,43	0,44
	120	0.57	0.40	0.63	0.53	0.40	0.45	0.51		0.84	0.46	0.43		0.26	

Cálculos das quedas de tensão

$$\overline{\Delta U} = \frac{\Delta U}{I_B \cdot l} = t(r \cos \Phi + x \sin \Phi)$$

Circuito 3:

$$I_{\rm B} = 40 \, {\rm A}$$

$$\cos \phi = 0.8$$

$$L = 10 \text{ m}$$

Eletroduto aparente

$$\Delta U = 3,54 \times 40 \times 0,01 = 1,42 \text{ V}$$

 $\Delta U = (1,42 / 380) \times 100\% = 0,37\% < 2\%$ que é a máxima queda de tensão admitida neste circuito

		_			
		fechados¹ magnético)			
Seções nominais (mm) ²	Cabos COBRECOM ²				
	Circuito monofásico e trifásico				
	FP = 0,8	FP = 0,95			
1,5	23	27,4			
2,5	14	16,8			
4	9,0	10,5			
6	5,87	7,00			
10	3,54	4,20			
16	2,27	2,70			
25	1,50	1,72			
35	1,12	1,25			
50	0,86	0,95			
70	0,64	0,67			

Circuito	S _F (mm ²)	S _N (mm ²)
1 (3F+N)	95	150
2 (3F+N)	25	50
3 (2F+N)	10	10

Determinação das seções nominais dos condutores por sobrecarga

NBR 5410

Seção nominal por capacidade de corrente – condutor de fase Módulo 3

Método de $I_{B}(A)$ Circuito referência 1 (3F+N) 190 209 F 2 (3F+N) 84 120 3(2F+N)40 **B1** 60

NBR 5410 - 5.3.4 - Disjuntores → $I_{B} \leq I_{N} \leq$

Tabela 39 — Capacidades de condução de corrente, em ampères, para o referência E, F e G

> Condutores: cobre e alumínio Isolação: EPR ou XLPE

Temperatura no condutor: 90°C

Temperatura ambiente de referência: 30°C

		N	létodos de referê	ncia indicados na tabela 33					
	Cabos m	ultipolares	Cabos unipolares ¹⁾						
	Dois condutores	Três condutores	Dois condutores	Três condutores	Três condutores carregados, no mesmo plano				
Seções nominais dos	carregados	carregados	carregados justapostos	carregados, em trifólio	Justapostos	Espa Horizontal	çados Vertical		
condutores	Método E	Método E	Método F	Método F	Método F	Método G	Método G		
mm ²	®	®		<u></u>	000 000 000 000				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
			Cobre						
0,5	13	12	13	10	10	15	12		
0,75	17	15	17	13	14	19	16		
1	21	18	21	16	17	23	19		
1,5	26	23	27	21	22	30	25		
2,5	36	32	37	29	30	41	35		
4	49	42	50	40	42	56	48		
6	63	54	65	53	55	73	63		
10	86	7 5	90	74	77	101	88		
16	115	100	121	101	105	137	120		
25	149	127	161	135	141	182	161		

6.2.5 - Capacidades de condução de corrente

Capacidade de condução de corrente I_z final de um condutor

$$I_z = I'_z \cdot f_1 \cdot f_2 \cdot f_3 \cdot f_4 \cdot f_n$$

- I_z = capacidade de condução de corrente final do condutor
- l'₇ = capacidade de condução de corrente das Tabelas 36-37-38-39
- f_1 = fator de temperatura \rightarrow Tabela 40
- f₂ = fator de resistividade térmica → Tabela 41
- f₃ = fator de agrupamento em 1 camada → Tabela 42; ou fator de agrupamento em várias camadas → Tabela 43
- f₄ = fator de agrupamento para cabos diretamente enterrados → Tabela 44; ou fator de agrupamento para cabos em eletrodutos enterrados → Tabela 45
- f_n = fator de correção do carregamento do neutro (apenas para alguns circuitos 3F+N)

Cálculos das capacidades de correntes corrigidas

10	J
Módulo	
MOUGH	
Michigan	

Circuito	f ₁	f ₂	f_3	f _n
1 (3F+N)	0,96	1,1	1	0,86
2 (3F+N)	0,96	-	0,73	-
3 (2F+N)	0,96	-	0,70	-

Circuito	Seção (mm²)	ľ _z (A)	$f = f_1 \cdot f_2 \cdot f_3 \cdot f_n$	I _Z (A) corrigida
1	95	211	0,91	192
2	25	135	0,70	95
3	10	66	0,67	44

Escolha do DP Proteção contra sobrecargas

Escolha do DP Proteção contra sobrecargas NRP 5410 - 5 2 4 - Diciuntoros - 1 < 1 < 1											dul	3			
	NBR 541	0 - 5.3.4	4 - Disju	nt	ore	s ·	>	l _B :	≤ I _N	_ ≤	Izm	Mic	C.C		
	Circuito	Seção (mm²)	I _B (A)	I _N (A)				I _z (A) corrigida							
	1	95	190		,	???	_			192		`			
	2	25	84			90				95		Aur	nen	ıtar	Iz
	3	10	40			40				44	Та	bela 3	7 / Mét	todo F	
			95 241 120 278	216 249	220 253	197 227	306 354	269 312	265 305	233 268	328 382	278 322	252 287	211 240	,)

Circuito	Seção (mm²)	ľ _z (A)	$f = f_1 \cdot f_2 \cdot f_3 \cdot f_n$	I _z (A) corrigida
1	120	240	0,91	218

Circuito	Seção (mm²)	I _B (A)	I _N (A)	l _z (A) corrigida
1	120	190	200	218

Cálculos das quedas de tensão

$$\overline{\Delta U} = \frac{\Delta U}{I_B \cdot l} = t(r \cos \Phi + x \sin \Phi)$$

Circuito 1:

S # 120 (3F+N) -

 $I_{\rm B} = 190 \, {\rm A}$

 $\cos \phi = 0.8$

L = 20 m

Eletroduto enterrado

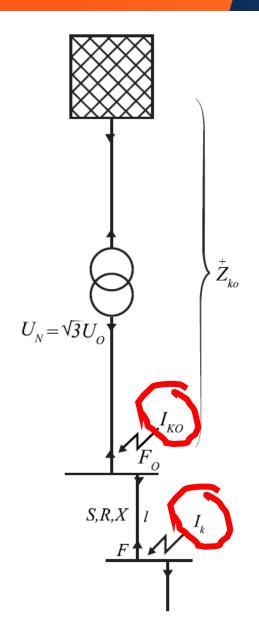
 $\Delta U = 0.36 \times 190 \times 0.02 = 1.37 \text{ V}$

 $\Delta U = (1,37 / 380) \times 100\% =$

0,36% < 2% que é a máxima queda de tensão admitida neste circuito

Seções	Cabos unipolares ³													
nominais (mm)¹		Circuito monofísico						Circuito trifésico					Circu trifás	ilco
	S = 10	cm	S = 20)cm	S = 2	2D	S = 1	0cm	S = 2	0cm	S =	2D	8	
	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95	FP = 0,8	FP = 0,95
1,5	23,6	27,8	23,7	27,8	23,4	27,6	20,5	24,0	20,5	24,1	20,3	24,0	20,2	23,9
2,5	14,6	17,1	14,7	17,1	14,4	17,0	12,7	14,8	12,7	14,8	12,5	14,7	12,4	14,7
4,0	9,3	10,7	9,3	10,7	9,1	10,6	8,0	9,3	8,1	9,3	7,9	9,2	7,8	9,2
6,0	6,3	7,2	6,4	7,2	6,1	7,1	5,5	6,3	5,5	6,3	5,3	6,2	5,2	6,1
10	3,9	4,4	3,9	4,4	3,7	4,3	3,4	3,8	3,4	3,8	3,2	3,7	3,2	3,7
16	2,6	2,8	2,6	2,8	2,4	2,7	2,2	2,4	2,3	2,5	2,1	2.4	2,0	2,3
25	1,73	1,83	1,80	1,86	1,59	1,76	1,52	1,59	1,57	1,62	1,40	1,53	1,32	1,49
35	1.33	1,36	1,39	1,39	1,20	1,29	1,17	1,19	1,22	1,22	1,06	1,13	0,98	1,09
50	1,05	1,04	1,11	1,07	0,93	0,97	0,93	0,91	0,98	0,94	0,82	0,85	0,75	0,82
70	0,81	0,76	0,87	0,80	0,70	0,71	0,72	0,67	0,77	0,70	0,63	0,62	0,55	0,59
95	0,65	0,59	0,71	0,62	0,56	0,54	0,58	0,52	0,64	0,55	0,50	0,47	0,43	0,44
120-	0,57	0,49	0,63	0,52	0,48	0,44	0,51	0,43	0,56	0,46	0,43	0,39	0,36	0,36
150	0,50	0,42	0,56	0,45	0,42	0,38	0,45	0,37	0,51	0,40	0,38	0,34	0,31	0,30

Passo # 09


Determinação das seções nominais dos condutores por curto-circuito

NBR 5410

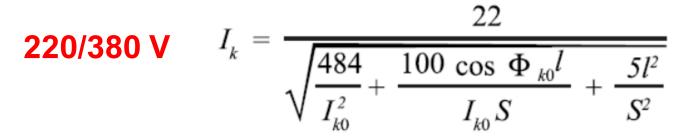
Cálculo simplificado da corrente de curto-circuito presumida

$$I_{k} = rac{U_{0}}{\sqrt{rac{U_{0}^{2}}{I_{k0}^{2}} + rac{2U_{0} \,
ho \cos \Phi_{k0} l}{I_{k0} S} + rac{p^{2}l^{2}}{S^{2}}}}$$

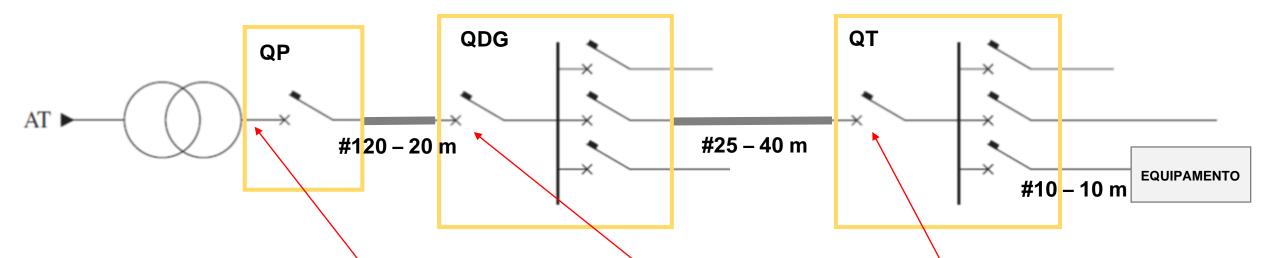
Fórmula a favor da segurança para cabos > 50 mm²
Para circuito 2 condutores → usar 2ℓ

$$I_{k} = \frac{22}{\sqrt{\frac{484}{I_{k0}^{2}} + \frac{100 \cos \Phi_{k0} l}{I_{k0} S} + \frac{5l^{2}}{S^{2}}}}$$

para condutores de cobre, ρ = 22,4 m Ω .mm²/m, e circuitos com tensões 220/380 V (Uo = 220 V)


$$I_{k} = \frac{12,7}{\sqrt{\frac{162}{I_{k0}^{2}} + \frac{57 \cos \Phi_{k0} l}{I_{k0} S} + \frac{5l^{2}}{S^{2}}}}$$

para condutores de cobre, $\rho = 22.4 \text{ m}\Omega\text{.mm}^2/\text{m}$, e circuitos com tensões 127/220 V (Uo = 127 V)


$I_{k0}(KA)$	1,5 a 3	3,1 a 4,5	4,6 a 6	6,1 a 10	10,1 a 20	Maior que 20
$\cos\Phi_{k0}$	0,9	0,8	0,7	0,5	0,3	0,25

Cálculo simplificado da corrente de curto-circuito presumida

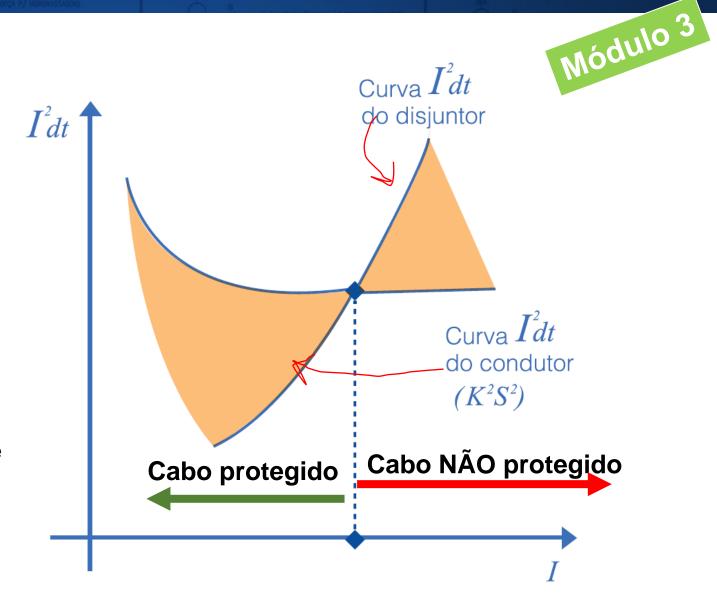
$$I_{ko1} = S / \sqrt{3} . U . z(\%)$$

 $I_{ko1} = 125k / \sqrt{3} . 380 . 0,04$
 $I_{ko1} = 4,8 kA$

$$I_{ko2} = 4,53 \text{ kA}$$

$$I_{ko3} = 2.81 \text{ kA}$$

5.3.5 - Proteção contra correntes de curto-circuito


5.3.5.5.2 A integral de Joule que o dispositivo deixa passar deve ser inferior ou igual à integral de Joule necessária para aquecer o condutor desde a temperatura máxima para serviço contínuo até a temperatura limite de curto-circuito

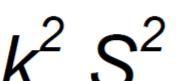
Dispositivo proteção (DP)

$$\int i^2 t dt \leq K^2 S^2$$

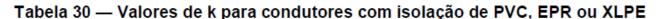
cabo

O valor de *k* é indicado na tabela 30 e S é a seção do condutor, em mm²

5.3.5 - Proteção contra correntes de curto-circuito

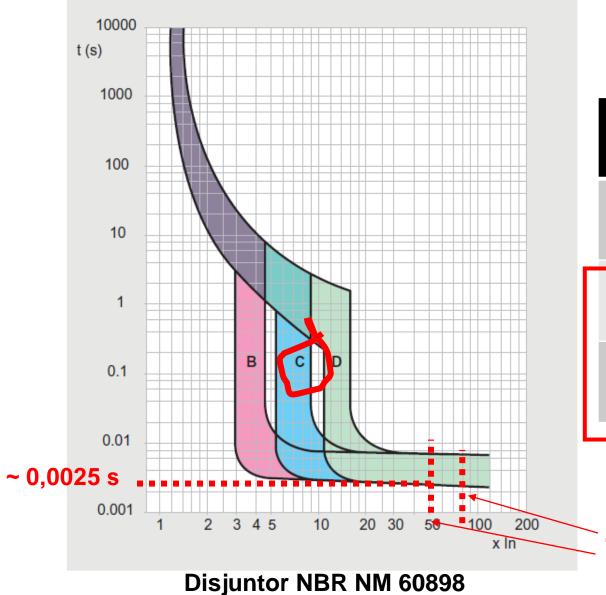

5.3.5.5.2 NOTA

Para curtos-circuitos de qualquer duração em que a assimetria da corrente não seja significativa, e para curtos-circuitos assimétricos de duração $0.1 \le t \le 5$ s, pode-se escrever:


onde:

Lé a corrente de curtocircuito presumida simétrica, em ampères, valor eficaz; t é a duração do curtocircuito, em segundos.

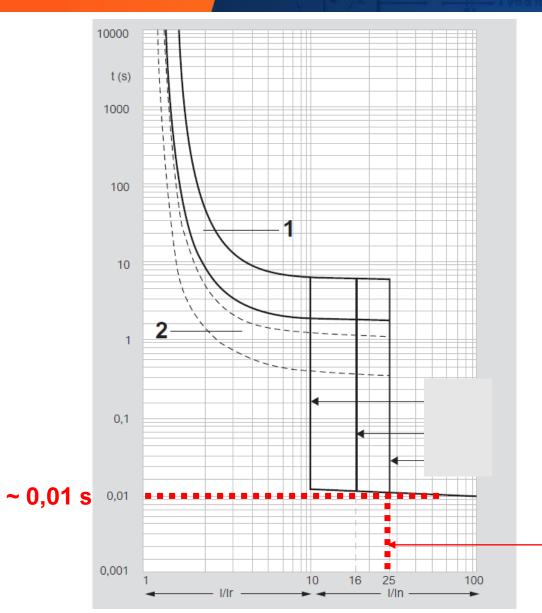
Módulo 3



	Isolação do condutor								
		P\	/C		EPR/XLPE				
Material do condutor	≤ 300) mm ²	> 300	mm ²					
Waterial do Condutor									
	Inicial	Final	Inicial	Final	Inicial	Final			
	70°C	160°C	70°C	140°C	90°C	250°C			
Cobre	115		103		143				
Alumínio	76		68		94				
Emendas soldadas em condutores de cobre	115		_		_				

Escolha do DP Proteção contra curto-circuito

Circuito	I _N (A)	I _k (kA)	t (s)
1	200	4,8	
2	90	4,53	0,0025
3	40	2,81	0,0025


4.530/90 = 50x

2.810/40 = 70x

Escolha do DP Proteção contra curto-circuito

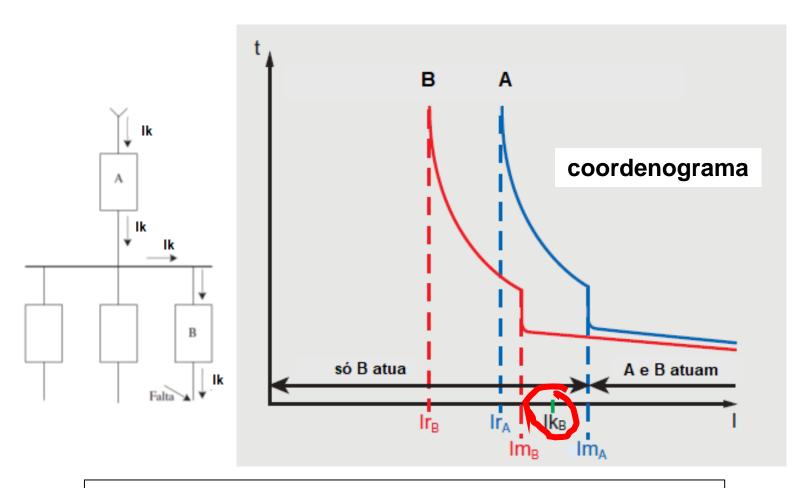
Circuito	I _N (A)	I _k (kA)	t (s)
1	200	4,8	0,01
2	90	8	
3	40	8	

4.800/200 = 24x

Disjuntor NBR IEC 60947-2

Escolha do DP Proteção contra curto-circuito

0 1	NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER, OWNER,	40	5
	¿d!	YIC	
1/N	ódy		


Circuito	Seção (mm²)	K ² S ²	I _k (kA)	Disj. I _N (A)	t (s)	I _k ²t	Condição
1	120	$143^2 \times 120^2 = 295.10^6$	4,8	200	0,01	0,23 . 10 ⁶	Cabo protegido
2	25	$143^2 \times 25^2 = 12,8 \cdot 10^6$	4,53	90	0,0025	0,05 . 10 ⁶	Cabo protegido
3	10	$143^2 \times 10^2 = 2,1.10^6$	2,81	40	0,0025	0,02 . 10 ⁶	Cabo protegido

Circuito	I _k (kA)	I _N (A)	I _{CN} kA)	Norma
1	4,8	200	6	NBR IEC 60947-2
2	4,53	90	6	NBR NM 60898 – curva C
3	2,81	40	3	NBR NM 60898 – curva C

Seletividade por corrente

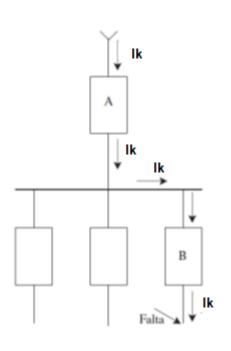
Seletividade por corrente aplicada principalmente para circuitos terminais, com baixa corrente de curto-circuito

Para seletividade total, a corrente de curto-circuito presumida I_K deve ser inferior à corrente do limiar de atuação magnética do dispositivo A (Im_A) →

$$Ir_A \ge 2 Ir_B$$

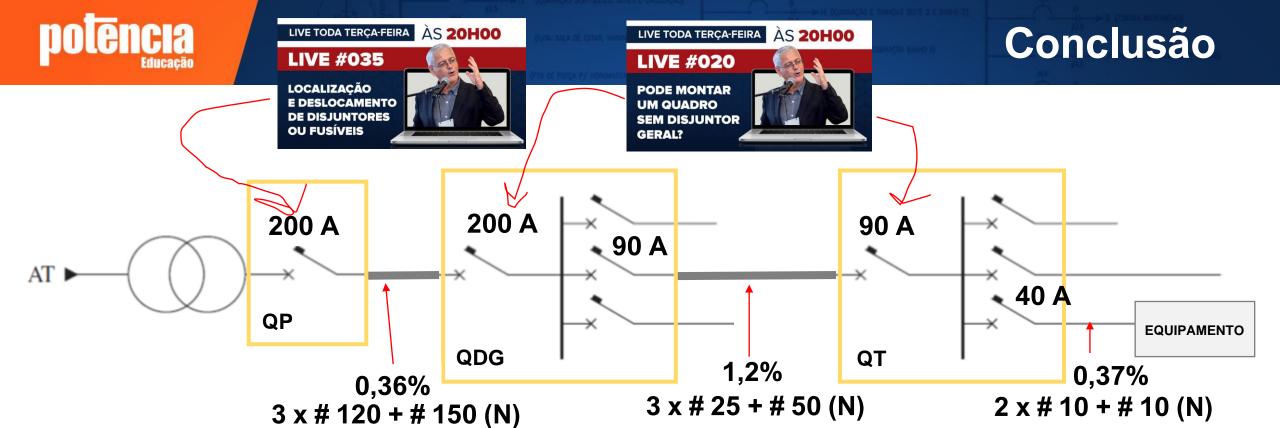
 $Im_A \ge 1,5 Im_B$

Para disjuntores fixos,


$$Ir = I_N$$

Ex.:
$$I_{NA} = 50 \text{ A e } I_{NB} = 20 \text{ A}$$

Seletividade por corrente


I_{NA} ≥ 2 I_{NB}

Circuito	I _N (A)	I _{NA} / I _{INB}	Seletivo
1	200		
2	90	200/90 = 2,2	SIM
3	40	90/40 = 2,25	SIM

Passo # 10 Conclusão

Circuito	S _F (mm²)	S _N (mm²)	Disjuntor I _N (A)	Disjuntor I _{CN} (A)	∆U (%)
1 (3F+N)	120	150	200	6	0,36
2 (3F+N)	25	50	90	6	1,2
3 (2F+N)	10	10	40	3	0,37


Obrigado!

HILTON MORENO

WWW.POTENCIAEDUCACAO.COM.BR

NBR 5410